Copied to
clipboard

G = C10×C42⋊C2order 320 = 26·5

Direct product of C10 and C42⋊C2

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C42⋊C2, (C2×C42)⋊3C10, (C22×C20)⋊32C4, (C4×C20)⋊48C22, (C22×C4)⋊10C20, C4213(C2×C10), (C23×C4).9C10, C2.3(C23×C20), C24.29(C2×C10), C10.76(C23×C4), C23.34(C2×C20), C4.30(C22×C20), (C23×C20).24C2, C20.247(C22×C4), (C2×C20).706C23, (C2×C10).334C24, C22.7(C23×C10), C22.25(C22×C20), (C23×C10).89C22, C23.67(C22×C10), (C22×C10).467C23, (C22×C20).609C22, (C2×C4×C20)⋊5C2, (C2×C4⋊C4)⋊24C10, (C10×C4⋊C4)⋊51C2, C4⋊C418(C2×C10), (C2×C4)⋊11(C2×C20), (C2×C20)⋊53(C2×C4), C2.1(C10×C4○D4), (C5×C4⋊C4)⋊75C22, C10.220(C2×C4○D4), C22.26(C5×C4○D4), (C10×C22⋊C4).35C2, C22⋊C4.27(C2×C10), (C2×C22⋊C4).15C10, (C22×C4).97(C2×C10), (C2×C10).226(C4○D4), (C2×C4).133(C22×C10), (C2×C10).265(C22×C4), (C22×C10).188(C2×C4), (C5×C22⋊C4).158C22, SmallGroup(320,1516)

Series: Derived Chief Lower central Upper central

C1C2 — C10×C42⋊C2
C1C2C22C2×C10C2×C20C5×C22⋊C4C5×C42⋊C2 — C10×C42⋊C2
C1C2 — C10×C42⋊C2
C1C22×C20 — C10×C42⋊C2

Generators and relations for C10×C42⋊C2
 G = < a,b,c,d | a10=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=bc2, cd=dc >

Subgroups: 402 in 330 conjugacy classes, 258 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C20, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C23×C4, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C2×C42⋊C2, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, C23×C10, C2×C4×C20, C10×C22⋊C4, C10×C4⋊C4, C5×C42⋊C2, C23×C20, C10×C42⋊C2
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, C10, C22×C4, C4○D4, C24, C20, C2×C10, C42⋊C2, C23×C4, C2×C4○D4, C2×C20, C22×C10, C2×C42⋊C2, C22×C20, C5×C4○D4, C23×C10, C5×C42⋊C2, C23×C20, C10×C4○D4, C10×C42⋊C2

Smallest permutation representation of C10×C42⋊C2
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 142 48 136)(2 143 49 137)(3 144 50 138)(4 145 41 139)(5 146 42 140)(6 147 43 131)(7 148 44 132)(8 149 45 133)(9 150 46 134)(10 141 47 135)(11 74 21 88)(12 75 22 89)(13 76 23 90)(14 77 24 81)(15 78 25 82)(16 79 26 83)(17 80 27 84)(18 71 28 85)(19 72 29 86)(20 73 30 87)(31 92 160 108)(32 93 151 109)(33 94 152 110)(34 95 153 101)(35 96 154 102)(36 97 155 103)(37 98 156 104)(38 99 157 105)(39 100 158 106)(40 91 159 107)(51 119 67 123)(52 120 68 124)(53 111 69 125)(54 112 70 126)(55 113 61 127)(56 114 62 128)(57 115 63 129)(58 116 64 130)(59 117 65 121)(60 118 66 122)
(1 79 67 96)(2 80 68 97)(3 71 69 98)(4 72 70 99)(5 73 61 100)(6 74 62 91)(7 75 63 92)(8 76 64 93)(9 77 65 94)(10 78 66 95)(11 114 40 131)(12 115 31 132)(13 116 32 133)(14 117 33 134)(15 118 34 135)(16 119 35 136)(17 120 36 137)(18 111 37 138)(19 112 38 139)(20 113 39 140)(21 128 159 147)(22 129 160 148)(23 130 151 149)(24 121 152 150)(25 122 153 141)(26 123 154 142)(27 124 155 143)(28 125 156 144)(29 126 157 145)(30 127 158 146)(41 86 54 105)(42 87 55 106)(43 88 56 107)(44 89 57 108)(45 90 58 109)(46 81 59 110)(47 82 60 101)(48 83 51 102)(49 84 52 103)(50 85 53 104)
(1 48)(2 49)(3 50)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 159)(12 160)(13 151)(14 152)(15 153)(16 154)(17 155)(18 156)(19 157)(20 158)(21 40)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(51 67)(52 68)(53 69)(54 70)(55 61)(56 62)(57 63)(58 64)(59 65)(60 66)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 81)(78 82)(79 83)(80 84)(91 107)(92 108)(93 109)(94 110)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)(111 144)(112 145)(113 146)(114 147)(115 148)(116 149)(117 150)(118 141)(119 142)(120 143)(121 134)(122 135)(123 136)(124 137)(125 138)(126 139)(127 140)(128 131)(129 132)(130 133)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,142,48,136)(2,143,49,137)(3,144,50,138)(4,145,41,139)(5,146,42,140)(6,147,43,131)(7,148,44,132)(8,149,45,133)(9,150,46,134)(10,141,47,135)(11,74,21,88)(12,75,22,89)(13,76,23,90)(14,77,24,81)(15,78,25,82)(16,79,26,83)(17,80,27,84)(18,71,28,85)(19,72,29,86)(20,73,30,87)(31,92,160,108)(32,93,151,109)(33,94,152,110)(34,95,153,101)(35,96,154,102)(36,97,155,103)(37,98,156,104)(38,99,157,105)(39,100,158,106)(40,91,159,107)(51,119,67,123)(52,120,68,124)(53,111,69,125)(54,112,70,126)(55,113,61,127)(56,114,62,128)(57,115,63,129)(58,116,64,130)(59,117,65,121)(60,118,66,122), (1,79,67,96)(2,80,68,97)(3,71,69,98)(4,72,70,99)(5,73,61,100)(6,74,62,91)(7,75,63,92)(8,76,64,93)(9,77,65,94)(10,78,66,95)(11,114,40,131)(12,115,31,132)(13,116,32,133)(14,117,33,134)(15,118,34,135)(16,119,35,136)(17,120,36,137)(18,111,37,138)(19,112,38,139)(20,113,39,140)(21,128,159,147)(22,129,160,148)(23,130,151,149)(24,121,152,150)(25,122,153,141)(26,123,154,142)(27,124,155,143)(28,125,156,144)(29,126,157,145)(30,127,158,146)(41,86,54,105)(42,87,55,106)(43,88,56,107)(44,89,57,108)(45,90,58,109)(46,81,59,110)(47,82,60,101)(48,83,51,102)(49,84,52,103)(50,85,53,104), (1,48)(2,49)(3,50)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,159)(12,160)(13,151)(14,152)(15,153)(16,154)(17,155)(18,156)(19,157)(20,158)(21,40)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(51,67)(52,68)(53,69)(54,70)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,144)(112,145)(113,146)(114,147)(115,148)(116,149)(117,150)(118,141)(119,142)(120,143)(121,134)(122,135)(123,136)(124,137)(125,138)(126,139)(127,140)(128,131)(129,132)(130,133)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,142,48,136)(2,143,49,137)(3,144,50,138)(4,145,41,139)(5,146,42,140)(6,147,43,131)(7,148,44,132)(8,149,45,133)(9,150,46,134)(10,141,47,135)(11,74,21,88)(12,75,22,89)(13,76,23,90)(14,77,24,81)(15,78,25,82)(16,79,26,83)(17,80,27,84)(18,71,28,85)(19,72,29,86)(20,73,30,87)(31,92,160,108)(32,93,151,109)(33,94,152,110)(34,95,153,101)(35,96,154,102)(36,97,155,103)(37,98,156,104)(38,99,157,105)(39,100,158,106)(40,91,159,107)(51,119,67,123)(52,120,68,124)(53,111,69,125)(54,112,70,126)(55,113,61,127)(56,114,62,128)(57,115,63,129)(58,116,64,130)(59,117,65,121)(60,118,66,122), (1,79,67,96)(2,80,68,97)(3,71,69,98)(4,72,70,99)(5,73,61,100)(6,74,62,91)(7,75,63,92)(8,76,64,93)(9,77,65,94)(10,78,66,95)(11,114,40,131)(12,115,31,132)(13,116,32,133)(14,117,33,134)(15,118,34,135)(16,119,35,136)(17,120,36,137)(18,111,37,138)(19,112,38,139)(20,113,39,140)(21,128,159,147)(22,129,160,148)(23,130,151,149)(24,121,152,150)(25,122,153,141)(26,123,154,142)(27,124,155,143)(28,125,156,144)(29,126,157,145)(30,127,158,146)(41,86,54,105)(42,87,55,106)(43,88,56,107)(44,89,57,108)(45,90,58,109)(46,81,59,110)(47,82,60,101)(48,83,51,102)(49,84,52,103)(50,85,53,104), (1,48)(2,49)(3,50)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,159)(12,160)(13,151)(14,152)(15,153)(16,154)(17,155)(18,156)(19,157)(20,158)(21,40)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(51,67)(52,68)(53,69)(54,70)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,144)(112,145)(113,146)(114,147)(115,148)(116,149)(117,150)(118,141)(119,142)(120,143)(121,134)(122,135)(123,136)(124,137)(125,138)(126,139)(127,140)(128,131)(129,132)(130,133) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,142,48,136),(2,143,49,137),(3,144,50,138),(4,145,41,139),(5,146,42,140),(6,147,43,131),(7,148,44,132),(8,149,45,133),(9,150,46,134),(10,141,47,135),(11,74,21,88),(12,75,22,89),(13,76,23,90),(14,77,24,81),(15,78,25,82),(16,79,26,83),(17,80,27,84),(18,71,28,85),(19,72,29,86),(20,73,30,87),(31,92,160,108),(32,93,151,109),(33,94,152,110),(34,95,153,101),(35,96,154,102),(36,97,155,103),(37,98,156,104),(38,99,157,105),(39,100,158,106),(40,91,159,107),(51,119,67,123),(52,120,68,124),(53,111,69,125),(54,112,70,126),(55,113,61,127),(56,114,62,128),(57,115,63,129),(58,116,64,130),(59,117,65,121),(60,118,66,122)], [(1,79,67,96),(2,80,68,97),(3,71,69,98),(4,72,70,99),(5,73,61,100),(6,74,62,91),(7,75,63,92),(8,76,64,93),(9,77,65,94),(10,78,66,95),(11,114,40,131),(12,115,31,132),(13,116,32,133),(14,117,33,134),(15,118,34,135),(16,119,35,136),(17,120,36,137),(18,111,37,138),(19,112,38,139),(20,113,39,140),(21,128,159,147),(22,129,160,148),(23,130,151,149),(24,121,152,150),(25,122,153,141),(26,123,154,142),(27,124,155,143),(28,125,156,144),(29,126,157,145),(30,127,158,146),(41,86,54,105),(42,87,55,106),(43,88,56,107),(44,89,57,108),(45,90,58,109),(46,81,59,110),(47,82,60,101),(48,83,51,102),(49,84,52,103),(50,85,53,104)], [(1,48),(2,49),(3,50),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,159),(12,160),(13,151),(14,152),(15,153),(16,154),(17,155),(18,156),(19,157),(20,158),(21,40),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(51,67),(52,68),(53,69),(54,70),(55,61),(56,62),(57,63),(58,64),(59,65),(60,66),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,81),(78,82),(79,83),(80,84),(91,107),(92,108),(93,109),(94,110),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106),(111,144),(112,145),(113,146),(114,147),(115,148),(116,149),(117,150),(118,141),(119,142),(120,143),(121,134),(122,135),(123,136),(124,137),(125,138),(126,139),(127,140),(128,131),(129,132),(130,133)]])

200 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4AB5A5B5C5D10A···10AB10AC···10AR20A···20AF20AG···20DH
order12···222224···44···4555510···1010···1020···2020···20
size11···122221···12···211111···12···21···12···2

200 irreducible representations

dim1111111111111122
type++++++
imageC1C2C2C2C2C2C4C5C10C10C10C10C10C20C4○D4C5×C4○D4
kernelC10×C42⋊C2C2×C4×C20C10×C22⋊C4C10×C4⋊C4C5×C42⋊C2C23×C20C22×C20C2×C42⋊C2C2×C42C2×C22⋊C4C2×C4⋊C4C42⋊C2C23×C4C22×C4C2×C10C22
# reps12228116488832464832

Matrix representation of C10×C42⋊C2 in GL4(𝔽41) generated by

40000
04000
00160
00016
,
32000
0100
00040
00400
,
40000
04000
00320
00032
,
1000
04000
0010
00040
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,16,0,0,0,0,16],[32,0,0,0,0,1,0,0,0,0,0,40,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,32,0,0,0,0,32],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40] >;

C10×C42⋊C2 in GAP, Magma, Sage, TeX

C_{10}\times C_4^2\rtimes C_2
% in TeX

G:=Group("C10xC4^2:C2");
// GroupNames label

G:=SmallGroup(320,1516);
// by ID

G=gap.SmallGroup(320,1516);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,436]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b*c^2,c*d=d*c>;
// generators/relations

׿
×
𝔽